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Abstract

The master thesis assesses total resource productivity change and resource pro-

ductivity change in terms of the environmental performance of Indonesian oil

palm smallholders. The study relies on production data and a plot level bio-

diversity account of around 30 farmers, collected in three waves from 2012 to

2018. First, Data Envelopment Analysis (DEA) is used to calculate Malmquist

Productivity Indices (MPI) based on usage of typical production inputs. Second,

by means of a non-parametric Directional Distance Function (DDF) approach,

resource productivity measures are obtained. Besides productive inputs, biodi-

versity loss is included as an undesirable output to additionally describe dynamic

resource productivity by environmental performance change. The results indicate

that (i) technical efficiency improved slightly in response to better farming prac-

tices, (ii) resource productivity decreased reflecting an acceleration of biodiversity

reduction in proportion to the technical efficiency change increase. Mixed results

were found for technical change: the adoption of higher yielding variaties were

counteracted by the strong El Niño effects that can be found in all respective

measures for the year of 2015. It is shown that the trade-off between improving

conventionally measured efficiency and productivity measures including biodiver-

sity increases over time.
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1 INTRODUCTION Dynamic Resource Productivity

1 Introduction

On April 8th, 2020, during the Corona crisis, the German government passed a

law on deforestation-free supply chains (Bundeskabinett, 2020). The law counter-

acts deforestation caused by expanding cultivation area for inter alia soy beans,

cocoa and palm oil. While everybody agrees upon the need for rain forest protec-

tion, a common ground with concrete measures to tackle deforestation, is difficult

to achieve.

The relevance of palm oil in the media is also reflected by a vast amount

of scientific literature examining the environmental effects of palm oil produc-

tion. Many studies have investigated the negative effects of land expansion on

biodiversity and CO2 emissions.

While some political actors in western countries propose import bans for palm

oil as a rash solution, it is questionable if this regulatory measure is effective and

not causing negative side-effects. After all, the global demand for palm oil has

risen sharply in recent years and will continue to rise in the coming years. Thus,

it is very important to harvest more palm oil from the same area to save rain

forests.

Without yield improvement, however, it will not be possible to increase plant

productivity without clearing more rain forests. Accordingly, it is important to

analyze how efficient smallholder palm oil cultivation currently is. To contribute

to this, this thesis analyzes dynamic efficiency and resource productivity of small-

holder palm oil cultivation in the province of Jambi, Indonesia.

It can be assumed for smallholder farmers in Jambi, that the production

of palm oil is not perfectly efficient and that there is room for improvement,

especially regarding the appropriate use of fertilizers, herbicides and pesticides.

Yield improvements linked to productivity increase might cause a substitutive

effect by hampering further deforestation.

For this study, survey data analyzing conventional agricultural production

and input variables were collected and combined with species richness data. The

data was gathered in three rounds in 2012, 2015 and 2018 in Jambi province,

Indonesia. The main variable reflecting desirable output is the production of

crude palm oil per farm. Plot size, man hours and agrochemicals are used as

1



1 INTRODUCTION Dynamic Resource Productivity

input variables throughout the analysis. Subsequently, a measure of undesirable

output representing the reduction of the Effective Number of Species is included

in the analysis.

Due to the scarcity of data it is necessary to use non-parametric methods for

the analysis. Efficiency is measured via the Malmquist Productivity Index’ (MPI)

measurement for Total Factor Productivity (TFP) change and the directional

distance function’s (DDF) approach to obtain a measurement for environmental

performance and therefore Total Resource Productivity (TRP) change.

With my paper I want to contribute to the existing research about palm oil

and its efficiency with respect to classical and environmental production factors.

If there is a way to reduce deforestation by using the available resources and inputs

more efficiently, it is worth analyzing where these inefficiencies are originated.

The guiding research question of this study is: Did the smallholder palm oil

production in Jambi province, Indonesia become more efficient over time in terms

of conventional efficiency and/or dynamic resource productivity?

My hypothesis is that both conventional efficiency and resource productivity

have increased over time and that the results of the analysis performed in this

thesis can prove this.

2



2 LITERATURE REVIEW Dynamic Resource Productivity

2 Literature review

Prevailing media presence of palm oil and related environmental debates are mir-

rored in the relatively high number of scientific publications in the field of palm

oil production. Leading scholars evaluate palm oil production from agricultural,

biological, ecological, economic, anthropological or ethnological perspectives. For

instance, many studies focusing environmental outcomes and related CO2 emis-

sions of transformation of lowland rain forest areas into palm oil plantations

(Reijnders & Huijbregts, 2008). Although a vast amount of literature related

to the topic, few studies have addressed dynamic efficiency or dynamic resource

productivity in smallholder palm oil production. This master thesis addresses the

outlined research gap. In this chapter the existing scientific literature concerning

palm oil production is reviewed.

This chapter reviews the existing literature regarding palm oil production and

is divided in four subchapters: The first part describes the physiology and dif-

ferent uses of the oil palm fruit, the second subchapter deals with the demand

of vegetable oils. The third subchapter addresses the evolution of palm oil pro-

duction over the last years, while the fourth subchapter focuses on the trade-off

between palm oil and environment.

2.1 Oil palm tree

2.1.1 Oil palm tree: Physiology

To understand the high demand for and omnipresence of palm oil in the market,

it is important to cast a glance at the physiology of the plant and its crop. The

palm oil tree, whose scientific name is elaeis guineensis, can grow 20-30 meters

high. They are pollinated by insects and not self-fertile. It grows best on moist

and wet soils, which is why most of the trees are planted in the lowland tropics.

Additionally, it can grow on very acid soils with a low pH value. However, it

cannot grow in the shade. Originally, the palm oil tree stems fromWestern Africa,

yet today most of them are found outside of Africa due to its intensive use for

palm oil production. Therefore, most of the world’s oil palm trees stand today in

South-East Asia and partially in South America. The breeding population deli

3
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dura is mainly used for large scale palm oil production in Malaysia and Indonesia

(Hayati, Wickneswari, Maizura, & Rajanaidu, 2004).

Elaeis guineensis is the most productive palm oil tree and it is able to pro-

duce around 8 - 28 bunches, each of 23 to 27kg per year, although the numbers

depend strongly on the tree’s age (Morcillo et al., 2013). The yields vary from

10 - 35 tonnes per hectare of fresh fruit bunch (FFB) (Ong, Mahlia, Masjuki, &

Norhasyima, 2011). An average bunch contains about 65% of fruit and 22% of

oil if the composition is ideal. The kernel makes up around 21% of the total fruit

weight (Poku, n.d.). The main product of the production is the palm oil which

can be extracted both from the mesocarp - the flesh of the fruit - and the kernel.

It is usually necessary to harvest the palm once every 7-10 days, as the bunches

continue to grow constantly over the year. As palm oil is a tropical crop, the yields

are suspect to seasonal changes: the weight of the bunch can be three times higher

in wet compared to dry season (Mhanhmad, Leewanich, Punsuvon, Chanprame,

& Srinives, 2011). This is due to the fact that the tree needs water to produce the

crops. The composition of the fruit is also suffering seasonal changes: while the

fruit is smaller in dry season, it contains higher mesocarp and kernel oil shares.

The composition of fatty acids which is relevant for further processing changes as

well.

Mhanhmad et al. investigated that higher accumulated rainfall and tempera-

ture lead to a higher average fruit weight and oil yield (Mhanhmad et al., 2011).

The opposite is observed for the fruit share on the bunches: the higher the accu-

mulated temperature and rainfall, the lower the fruit share.

2.1.2 Oil palm tree: Main uses

As the melting point is at around 35°C, palm oil can be used both in solid and fluid

physical state. 68% of the globally produced palm oil is used for food production,

27% for industrial purposes and 5% for biofuels. The food production use mostly

consists of processed food, beverages and feedstuffs for agriculture, whereas the

industrial use is mostly applied in cosmetics and detergents (Noleppa, 2016).

As discussed in the beforehand section, palm oil is a very productive crop. Its

yield is higher than the ones of other sources of vegetable oils, such as rapeseed,

4
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coconut or sunflower. The yield of oilseeds like soy bean is also lower. A study

by Ong et al. analyzed the yields of different oil crops used for the production of

biodiesel. In comparison to other oil crops, the production oil yield of palm oil is

of nearly 5,950 litres per hectare, around 3,000 litres per hectare for coconut and

around 1,200 litres for rapeseed (Ong et al., 2011).

The paper argues that the greenhouse gas (GHG) emissions could be reduced

by palm oil based biodiesel by 62%. Thus, replacing palm oil with other vegetable

oils with coconut oil or rapeseed would require a bigger cultivation area. Regional

differences matter: as oil palms cannot be cultivated in temperate climate zones

- in contrast to e.g. rapeseed or sunflower - all types of vegetable oil sources are

relevant for meeting the future global demand. Still, a replacement of palm oil

by other vegetable oil sources might exacerbate environmental problems.

2.2 Demand side

2.2.1 Palm oil demand: future prospects

The demand for palm oil is linked to the global demand for vegetable oils. Global

production of vegetable oils ascended from around 160 million tons in 2012 by

more than 25% to 200.2 million tons in 2019 (Colombo, Chorfi Berton, Diaz, &

Ferrari, 2018). Palm oil increased its share with respect to other oil crops slightly

from 34.5% in 2013 to 35.8% in 2019. The four most important oil crops in terms

of vegetable oils are are palm oil, soy beans, sunflower and rapeseed. Together

they produce more than 85% of the world’s vegetable oils.

Vegetable oils are crucial for fulfilling the sustainable development goals (SDG)

2 (United Nations, 2020) by assuring the global food security throughout the

next decades. SDG 3 also depicts the importance of fats for good health and

well-being, however, the UN works for better diets by trying to replace trans-fats

by less harmful fat acids in the diets. Palm oil plays an important role in that re-

gard. As we deduced in the previous sections, it is the most productive vegetable

oil in terms of surface area productivity.

In 2018, vegetable oil prices experienced a ten-year low, partially due to a

slowdown in global trade. In 2020, due to the COVID-19 pandemic, demand

for vegetable oils experienced a slowdown. Despite these unfavorable factors and

5
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the limited land expansion capacity for soy bean and palm oil, it is estimated

that global vegetable oil production will further expand to 28 million tons by

2028 (OECD & FAO, 2020). However, the estimated growth rate for the period

2020-2029 is of 1.3% per year and therefore lower than the growth rate of the last

decade. Consequently, the demand for palm oil will continue to grow beyond the

next 10 years.

One of the drivers of this increased demand is Indonesia itself. Being the

world’s major producer of palm oil, Indonesia is pursuing a transition towards

one of the countries in the world with the highest domestic uses of palm oil. A

national policy to promote biofuels plays an important role in this context. By

2025, it is estimated that 51 million tonnes of Indonesian palm oil production will

be needed to supply the country’s worldwide and domestic demand (Khatiwada,

Palmén, & Silveira, 2018).

2.2.2 Palm oil demand: influencing factors

The increasing demand for more environmentally sustainable products is putting

pressure on many agricultural products whose land use is linked to environmental

damage. This affects in particular palm oil or oilseeds like soy beans. Both are

related to the destruction of tropical rainforests. The question is, how exactly

the environmental topic influences the demand for palm oil and soy bean prod-

ucts. A lab experiment from Disdier et al. reveals that the willingness to pay

(WTP) for different product sets which include palm oil decreases after the par-

ticipants received information about health and environmental impacts of palm

oil production (Disdier, Marette, & Millet, 2013). Simultaneously, the WTP for

non-palm-oil products did not decrease with similar packages concerning negative

health and environment information about the products.

Yet, when the participants received information about the land use of alterna-

tive vegetable oils, the WTP for palm oil products increased slightly compared to

the alternative products. Thus, there is no clear demand shift or decline for palm

oil products if the consumers are informed about the environmental consequences

of all products.

As palm oil is often framed in the media as an ecologically incompatible

6
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product, consumers tend to mistrust Since palm oil is framed in the media as

environmentally incompatible, the product has a bad reputation. However, it is

usually ignored that other products also require land for cultivation and their

cultivation is by no means CO2 neutral.

There is a clear consumer preference for environmentally friendly products.

However, there are only few processed oil crops with very low CO2 emissions or

high environmental compatibility. Additionally, due to its high yields, palm oil

has a comparative advantage over other oil crops and thus the potential to save

agricultural land. The question is, how is it possible to transform palm oil into

more environmentally compatibility and how to communicate this to consumers

in a credible way?

2.3 Supply side

2.3.1 Palm oil supply: evolution of Indonesian palm oil production

The demand for vegetable oils is projected to increase in the next years. The

growth projection for palm oil production in Indonesia is of 1.8% per year for

2019 to 2028 which is considerably low. In contrast, production grew at a rate

of 6.9% per year from 2009-2018 (OECD & FAO, 2019). In some regions, the

growth potential is limited because the years of constant expansion lead to a lack

of potential land cultivation area. Riau province, for example, already has 25.4%

of its whole area covered with palm oil plantations (BPS Statistics Indonesia,

2019).

There is not much area left which would still be profitable to be transformed

into oil palm plantations. In other regions, the landscape has not the best char-

acteristic for palm oil plantations, e.g. in Sulawesi which is rather hilly and more

attractive for other crops, such as cocoa or coffee. Despite the limited growth

potential in terms of area, palm oil production grew substantially during the last

two decades. In this subsection, the evolution of Indonesian palm oil production

throughout the last years are described in detail.

Indonesia and Malaysia are the two biggest palm oil producing countries:

they produce over 80% of global palm oil which represents around 30% of the

volume of all vegetable oils. As the data set which is used for this thesis’ analysis

7
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Figure 1: Palm oil production volume in Indonesia over time (BPS Statistics
Indonesia, 2019)

Figure 2: Palm oil plantation area in Indonesia over time (BPS Statistics Indone-
sia, 2019)

8
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comes from Indonesia, it is worth examining the evolution of palm oil production

on a national scale over the last years: Figure 1 depicts crude palm oil (CPO)

production in the upper graph and palm oil kernel production in the lower graph.

As illustrated in the upper graph, CPO production more than doubled from 22.5

million tons in 2010 to 45.9 million tons in 2019. Out of this number, around 35%

are accounted to smallholder production. This share remained relatively constant

over time, as the smallholder share in 2010 was at 37%. Thus, both large private

enterprises and smallholders increased their production at a very high growth

rate during the last 10 years.

A similar picture is drawn when looking at the lower graph in figure 1. It

depicts the evolution of palm oil kernel production in Indonesia during the last

10 years. The most striking difference to the other figures is the smaller proportion

of smallholder production, which was 26.3% of total production of 9.17 million

metric tons in 2019. This is one of the reasons why smallholder production is not

as productive as large-scale production: Many palm oil kernels are not processed

as effectively by the smaller mills as the kernels of large-scale production. As we

have seen before, the kernel oil is especially relevant for industrial uses. Improving

practices in kernel production has the potential to further improve smallholder

incomes in the future.

Another production type which is included in non-smallholder production in

these figures is the production of state-owned companies. In 2013, they produced

9% of Indonesia’s palm oil and represented 7% of the Indonesian palm oil land use

(Daemeter Consulting, 2015). They used to play an important role in the process

of developing the economic activity in former remote areas, but as both private

companies and smallholders are now dividing the market among themselves, state-

owned companies will continue to play minor roles in comparison to the quickly

growing private sector.

The available data concerning palm oil production and cultivation area varies

according to the institution that collects and provides it. The FAO has other

production numbers than USDA or Badan Pusat Statistik Indonesia (BPS). I

finally decided in favor of the Indonesian national bureau of statistics (BPS) data

because it provides numbers concerning both large estate and smallholder palm

9
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Figure 3: Palm Oil Fruit Bunch Production per Indonesian Province, 2018.
Source: BPS Indonesia, 2018

Note: 1 Juta = 1 million

oil production.

Figure 2 shows the total oil palm plantation area and its smallholder share

over the last 10 years. The current total plantation area increased is 14.2 million

hectares which equals more than one third of the total area of Germany. Of

this area, 6.04 million hectares - or 19.4 % - are owned by smallholder farmers

(BPS Statistics Indonesia, 2019). As in the previous figures, the smallholder

share remained constant over the years, while the total plantation area extended

significantly. There are two possible explanations for that reduction:

1. The illegal expansion of small-scale cultivation areas was not reported and

is therefore not included in the official statistics of the Indonesian statistics

office BPS.

2. Since several small-scale farmers increase their plot size over time, they

are no longer counted as such after surpassing a certain threshold. This

would also explain the strong increase of large-scale cultivation area in the

respective years from 2016 to 2018.

Figure 3 shows the distribution of palm oil fruit bunch production per province

in 2018, the year of the last data collection for this study. It can be observed that

10
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most of the production takes place on the islands of Sumatra and Borneo. The

three provinces with the highest palm oil production are North Sumatra, Riau

and Central Kalimantan. Together, they produced 50.5% of Indonesia’s CPO in

2018.

Regarding Jambi province, its 721,403 hectares represented 13.4% of the entire

Indonesian palm oil cultivation area in 2013. Of all provinces, it ranks 7 out of

23 Indonesian palm oil producing provinces. Compared to the overall Indonesian

smallholder share of 34.5%, Jampi province has one of the highest smallholder

shares in terms of palm oil production area with 62%. This emphasizes that

smallholder palm oil production is not only a fringe phenomenon but a substantial

part of the province’s economic activity. This fact makes the results of this study

even more relevant. The mean plot size of smallholders is 2.6 hectares in Jambi

province, slightly above average. The average plot size of our sample figures of

our sample are similar, as shown in chapter 4.

2.3.2 Palm oil supply: increasing production and farmers’ income

Many scholars agree on the trade-off between increasing farmers’ income through

oil palm cultivation and the negative environmental effects on biodiversity and

CO2 emissions. In this subsection, the income side of this trade-off is examined.

Today, 6 million people are directly employed in the palm oil industry in

Indonesia. This number has grown continuously during the last years. If the

sector continues to grow as it has been growing until now, the sector could employ

more than 20 million people in 2045 (Purnomo et al., 2020). The increased

attraction of the sector for smallholders and day labourers indicates an economic

incentive expressed by a considerably high expected income.

Kubitza et al. (2018) elaborate that in Jambi province, palm oil cultivation

practice has significant positive effects on farmers’ livelihoods. This is mirrored

in total consumption expenditures being significantly higher in palm oil cultivat-

ing households than in non-cultivating households. Cultivating households were

also able to save labour time through their economic activity related to palm

oil and reallocate this time to non-farm economic activities, thereby increasing

their income further. Meanwhile, no significant spillover effects by cultivation
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on neighbouring, non-cultivating households were found - neither positive nor

negative ones (Kubitza, Krishna, Alamsyah, & Qaim, 2018).

Santika et al. (2019) find mixed results concerning the impact of expanding

palm oil plantation practices on objective and material well-being in Kalimantan

from 2000 to 2014. More accurately, those villages who already relied on market-

oriented economic activities are more likely to profit from the introduction of

palm oil plantations. The opposite finding was made for those villages with a

high natural forest cover and which were mainly relying on subsistence farming.

In addition, socioeconomic inequality increased for many villages, as well as en-

vironmental issues, such as a deteriorated natural hazard prevention (Santika et

al., 2019).

2.3.3 Palm oil supply: El Niño

With regard to figure 1, it is evident that the production growth rate decelerated

between 2015 and 2016. This is attributed to the fluctuation in temperature

between the Pacific ocean and the surrounding atmosphere. This weather phe-

nomenon is called El Niño. It causes a hotter, dryer weather in several areas in

South-East-Asia. It is estimated that for the 2015/16 El Niño wave in Malaysia,

FFB yields dropped by 10-16% and thus, CPO production by 8-14% (Azlan et

al., 2016).

The World Food Programme states that the drought caused by the phe-

nomenon substantially increased food insecurity in affected areas. Those house-

holds who depend on agricultural wage labor suffered a reduction of at least 30%

in production and therefore in income (Webb & Wadhwa, 2016). The data is

mostly collected in Eastern Indonesia, namely in Sulawesi, Jawa and Nusa Tung-

gara, however, Sumatra and Kalimantan are also strongly affected by El Niño.

It is reasonable to suggest that strong decreases in palm oil yield caused by El

Niño affect the efficient use of input factors in the farmers’ agricultural practices.

Therefore, El Niño can be considered as an external shock for this study, which

mainly affects the 2015 wave data.

12
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2.4 Palm oil and environment

2.4.1 Palm oil and environment: Description of the problem

Between 2004 and 2013, vegetable oil production increased globally by 4.5% on

average per year(Oettli, Behera, & Yamagata, 2018). So far, most of the rise in

production is obtained by expanding the cultivation area. Therefore, palm oil

is one of the major triggers of rain forest destruction in South-East Asia (Imai,

Furukawa, Tsujino, Kitamura, & Yumoto, 2018). Today, rain forest destruction,

biodiversity loss and increased CO2 emissions are associated with expanding palm

oil cultivation.

Many people profited from the increase in palm oil production by higher

incomes. However, the expansion of palm oil implied a massive land use change

and the clearing of large areas that beforehand were mainly covered by areas of

high tree density - if not by intact rain forests. This circumstance anticipates

one of the main results of the existing literature concerning palm oil: there is a

clear trade-off between economic prosperity - implying an increased well-being of

many farmers and companies - and the preservation of the environment.

Sayer et al. (Sayer, Ghazoul, Nelson, & Klintuni Boedhihartono, 2012) de-

scribe palm oil as a highly profitable crop which has stimulated economic growth

in several countries and therefore contributed to the alleviation of poverty. Ad-

ditionally, palm oil plantations in a landscape mosaic can contribute to biodiver-

sity conservation. And that these schemes are mostly found in smallholder farms

where plantations are less extensive.

Smallholder systems can retain more diverse landscape matrices which have

the potential to retain more of the original biodiversity. These considerably di-

verse production landscapes also might represent a less hostile environment for

animals which permit them to move. In fact, the

The central statement of Sayer et al. (2012) outlines four truths about palm

oil that, according to the authers, should be recognized prior to any meaningful

discussion about the topic:

1. demand for oil palm is increasing and continues to do so due to a growing

and more affluent global population
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2. in humid lowland tropics, palm oil is one of the most profitable crops

3. more C02 is stored by oil palm plantations than by any other agricultural

alternative in humid lowland tropics

4. in comparison to rain forests, native biodiversity in palm oil plantations is

substantially lower.

In Indonesia, most of the plantations are administered by large corporations.

However, the share of independent smallholder farmers is around 40% and its

share continues to increase over time (Feintrenie, Chong, & Levang, 2010). This is

partly attributable to stronger limitation of land acquisitions by big corporations

and to the increasing potential of conversion of smallholders’ farmland into palm

oil plantations. Illegal slash-and-burn practices (S&B) also play an important role

in this context. This is, among other things, due to the fact that decentralized

smallholder conversion practices are more difficult to monitor by the state than

those of big corporations.

Ketterings et al. (1999) analyzed the structure and motives of S&B practices

in Bungo department within Jambi province, Indonesia. They have pointed out

that better accessibility to land is the main driver of illegal S&B, since 51% of

the farmers mention it as a motive. Additionally, 23% of the farmers report that

the ash which functions as a fertilizer is the main motive of S&B, 18% of them

indicate that the fire would improve the soil structure. Further drivers are the

removal of weeds and trees because they compete with the main crop and the

fact that S&B reduces the occurrence of diseases, pests and fungus (Ketterings,

Tri Wibowo, van Noordwijk, & Penot, 1999).

2.4.2 Palm oil and environment: Certification

While the smallholders try to compete with large corporations in the market,

the social and environmental performance of their products is far from being

optimal. In this context, European and North American importers increase de-

mand for certified palm oil, e.g. by WWF’s Roundtable on Sustainable Palm

Oil (RSPO). Today, about 19% of the palm oil production is RSPO certified

(RSPO, 2019). Additionally, the Indonesian government created the Indonesian
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Sustainable Palm Oil certificate which is mandatory for all producers (Jelsma,

Schoneveld, Zoomers, & van Westen, 2017). However, it is widely criticized for

applying less rigid standards than RSPO and hereby undermining the already

existing private standards. After all, one can say that there are significant certi-

fication attempts to make palm oil production more sustainable.

Despite these attempts, the existing literature suggests that conservation

schemes such as RSPO are mostly ineffective in achieving their conservation ob-

jectives (Ruysschaert & Salles, 2014). In their study area around North Sumatra,

it was examined that the amount of the premium paid by the firms to the farmers

for RSPO certified plantation practices is too low. The economic loss is higher

than this premium and unless the farmers attached a high value on ethical and

environmental issues, there is no incentive to apply the RSPO practices.

In Germany, the Forum for Sustainable Palm Oil (FONAP) is trying to change

the use of palm oil in German industry to RSPO certified palm oil. Hence, there

are significant attempts from the Indonesian state, its public administrations and

international stakeholders to make palm oil production more environmentally

sustainable and less detrimental for rain forests.

2.4.3 Palm oil and environment: Yield improvements

Previous subsections and figure 2 pointed out that the increase in palm oil pro-

duction was preliminarly obtained by expanding the cultivation area. However, as

available and accessable land has become scarcer during the last years, especially

in Indonesia and Malaysia, an increasing importance will be attached to yield

improvements on the area which is already used for cultivation. So far, produc-

tion per unit of area did increase over the years, but at a low scale: on average,

it increased by 0.148% per year from 2009 to 2018. From 2009 to 2015, yields

increased by 2.8%, yet after 2015, yields decreased again and today they are at

the same level than in 2014. This is another indicator for the El Niño effects on

palm oil production. Yields in Indonesia were reported to be 3.8 tonnes of CPO

per hectare which is substantially lower than the Malaysian yield of 4.5 tonnes

per hectare (Khatiwada et al., 2018). This number indicates that the weather

conditions of both countries are similar and there is significant room for yield
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improvement on the Indonesian side.

Still, yield improvements in palm oil production are usually not a matter of

days or weeks. Due to the design of the plantations including the distancing

between the trees cannot be changed once it is installed, yield improvements can

only be achieved by:

• best farming practices

• agrochemicals including fertilizers, herbicides and pesticides

• in some cases, irrigation

As mentioned before in subsection 2.3.3, El Niño extends extremely dry sea-

sons and makes rainfall more unstable which is proven to affect yields negatively.

Thus, irrigation would be needed to compensate the low rainfall. Thus, it can be

assumed that these strong effects on productivity also affect the efficient use of

resources. Although one would assume that farmers always have a high incentive

to economize their resources as much as they can, it is also possible that an exter-

nal shock makes farmers more sensitive for the inputs they are using. After all,

agrochemicals are costly and an expected future decrease in revenue would lead

to less expected purchasing power. This would lead to more carefully applied

inputs for production.

Villoria et al. (2013) found that in a scenario of increasing productivity of

primary and intermediate inputs, oil palm production in Indonesia and Malaysia

increased by 39% using the same amount of land. Isolated, local TFP growth may

lead to a slight increase of deforestation. However, thanks to the global increase of

TFP, these deforestation effects are counteracted. Moreover, a net forest reversion

and a reduction of greenhouse gas emissions are further consequences of this global

increase. The paper concludes that global increases in crop productivity would

be an effective tool for preserving rain forests from transformation in Indonesia

and Malaysia (Villoria, Golub, Byerlee, & Stevenson, 2013) .

Soliman et al. (2016) analyzed production data from a survey conducted

among palm oil smallholders in West and South Sumatra. They conclude that

efficiency of smallholders is far from being at an optimal level. However, the

main factors leading to these inefficiencies are not yet well understood by the
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existing literature (Soliman, Lim, Lee, & Carrasco, 2016). For their analysis, the

authors applied a two-stage data envelopment analysis (DEA). The same method

is used for this analysis. Subchapter 5.1 describes it in detail. The results of

the study also show that an average yield improvement of 65% would be possible

in palm oil production. Particularly, if the use of fertilizers and herbicides were

less excessive, more targeted and therefore more efficient. After all, these inputs

represent a considerable Additionally, better pruning and weeding practices as

well as the adaption of industry-supported scheme management had significantly

positive effects on yields and efficiency.

The use of palm oil has greatly expanded in recent years, often at the expense

of the rain forest. The demand for palm oil will continue to rise in the coming

years and production will increase accordingly. According to current data, the

yields are still in need of improvement. The next chapters of this study will lay

the groundwork for investigating how the trade-off between smallholder yields

and environmental protection has developed in Jambi, Indonesia during the last

years.
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3 Theory

The study aims to analyze the dynamics of efficiency and resource productivity

in palm oil production in Jambi, Indonesia from 2012 to 2018. In this chapter

the theoretical framework of the analysis is built. The first part of this chapter

discusses the relevance and the scope of analyzing efficiency in the case of palm

oil smallholders. The second part introduces the Farrell Efficiency which is the

theoretical basis of the Data Envelopment Analysis (DEA). The third and final

part deals with the concept of Total Resource Productivity (TRP), an extension

of Total Factor Productivity (TFP) which allows for the inclusion of biodiversity

loss as a source of undesired output.

3.1 The scope of efficiency

Why is efficiency important? Investopedia defines efficiency as a level of per-

formance that describes using the least amount of input to achieve the highest

amount of output. Thus, to save resources it is crucial to understand the reasons

why some producers are not efficient in their production. In contrast, productiv-

ity describes an increased output for a given amount of inputs. A profit-oriented

businessman or farmer would most likely seek to maximize both. Increased pro-

ductivity usually accompanies increased efficiency, but they can also counteract.

While productivity decreases, efficiency can increase. This might be the case when

resources suddenly become scarcer, as e.g. through an external shock - whereby

farmers need to use their scarce inputs as careful - or efficient - as possible.

The underlying assumptions for both efficiency and productivity include the

idea of the Homo Oeconomicus. It implies a perfectly rationally acting market

actor. More precisely, every market actor is able to oversee the whole market and

takes his decisions with perfect information about the long-term consequences of

his actions. This idea is not above any doubt. Subdisciplines of economic science

such as behavioral economics, institutional economics and political economy and

ecological economics expand the neoclassical framework and allow for actors who

do not act perfectly rationally. In this sense, behavioral economics admits that

human perceptions are systematically affected by biases and cognitive limitations,

while ecological economics considers the environment as an endogenous factor
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which should be included in economic calculations (Urbina & Ruiz-Villaverde,

2019).

In a corporate environment, such as a factory or a service company, there

is no problem with assuming rationally acting market participants. After all,

they have employees whose purpose is to observe the market and optimize the

firm’s processes. However, in the context of small-scale agriculture, the busi-

nesses are usually too small to fulfill this condition. It seems sensible to assume

profit-orientation in these businesses for the farmers to arrive at a certain level

of wealth and economic stability. Still, it is questionable if they would follow

the profit maximizing logic of reinvesting and expanding their businesses once

they have a good harvest. It is more likely that after a good harvest the time

spent with friends and family is rather maximized instead. Thus, in the con-

text of small-scale farming it is clearly problematic assuming no preference for

future and present revenues as in neoclassical theory. It is probably the small

farmers themselves who know best how they should allocate their working and

leisure time. Additionally, it is likely that they know their own plot best, which is

why one should be particularly careful when drawing conclusions about farming

practices which appear as inefficient.

Although, as just stated, the concept of efficiency is by no means uncontrover-

sial, the advantages of an efficiency analysis outweigh the disadvantages. In fact,

the efficiency analysis of smallholder farmers concerning resource use contributes

to the aforementioned transdisciplinary field of ecological economics. In this re-

spect the inclusion of nonmarket resources such as loss of biodiversity can be

seen as an approach to internalize environmental externalities in economic calcu-

lations. In relation to small-scale palm oil cultivation, these results can be helpful

in identifying how more environmentally friendly technologies can be applied.

Furthermore, the understanding of the influencing factors of imperfect effi-

ciency can make it possible to reduce the spill of resources and therefore combat

avoidable land expansion. It may help us to understand the characteristics of

farmers which apply best practices in their production. In that way, the results

of the efficiency analysis can lead to improved policy advice. However, the re-

sults from the subsequent parts have to be interpreted with caution. Small-scale
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farming is multifaceted and the results must be placed in the appropriate context.

3.2 Farrell efficiency

The assumption of perfect rationality which have been discussed in the last part is

partially loosened by Farrell to form the basis of individual efficiency calculations.

Farrell’s model allows for inefficiently acting individuals (Farrell, 1957) - which

is an important extension of the neoclassic model - and the basis of efficiency

calculations in a non-parametric framework.

The Farrell (1957) approach to efficiency analysis extends Robert Solow’s work

about productivity and efficiency (Solow, 1957). While Solow was focusing on

the macroeconomic dimension of factor productivity, Farrell’s work concerning

efficiency is mainly focused on the micro level. The main contributions are: 1.

the definition of efficiency and productivity; 2. the way to calculate a benchmark

technology and the respective efficiency measures (Førsund & Sarafoglou, 2002).

One of the novelties with regard to the existing neoclassical production theory

is the aforementioned granting of the possibility of inefficient operations. Figure

4 shows the definition of Farrell efficiency graphically. Within that figure, x and y

represent two different input coefficients. Constant returns to scale are assumed

for this case. The SS ′ curve describes the unit isoquant representing the frontier

technology. It contains the various input combinations that a perfectly efficient

firm can employ to produce a unit of output. The point O describes the origin,

while Q represents a 100% efficient firm and P a firm with an inefficient input

combination. The line AA′ shows the price ratio of the two production factors.

The definitions for deriving the individual efficiency types are as follows:

• OQ/OP shows the technical efficiency of firm P . It describes the inputs

needed assuming best practice to produce the optimal observed output in

terms of each input. With perfect efficiency, the term takes the value 1 or

100%.

• OR
OQ

describes the price efficiency. Note that point Q might be technically

efficient but it only achieves perfect price efficiency at the point Q′, where

the unit isoquant is tangent to the price ratio AA′
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Figure 4: Farrell efficiency with two input types

Source: Farrell, 1957

• OR
OP

= OQ/OP
OR/OQ

describes the overall efficiency, which is the production cost

for the event that technical and price efficiency are both achieved. In other

words, it is defined as the technical efficiency divided by the price efficiency

(Farrell, 1957).

The next step is a piecewise linear envelopment of the data as the most pes-

simistic specification of the frontier. The idea is that the resulting unit isoquant

lies as close to the observations as possible (Førsund & Sarafoglou, 2002). In this

way, the distribution of the data spots is taken into account for the calculation

of each efficiency type. However, there are many different approaches to pursue

the linear programming which would give us the frontier function we are looking

for.

The Farrell efficiency is the basis of DEA and in connection with panel data,

of the MPI. Both are used to draw conclusions about the productivity of the

smallholders of our sample using conventional production variables.

3.3 Total Resource Productivity

One of the fundamental theoretic frameworks of the analysis carried out in this

thesis is the Total Resource Productivity (TRP) approach. The approach is an

expansion of the Total Factor Productivity approach by Robert Solow (Solow,
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1957). According to Solow the output shift ∆Q/Q in an economy is described as

∆Q

Q
= α ∗ ∆K

K
+ β ∗ ∆L

L
+

∆A

A
(1)

where

Q = F (K,L; t) (2)

and where ∆K/K represents the shift of capital and ∆L/L the shift of man hour

from one period to another. t is a placeholder for time and allows for technical

change in Q. α and β denote the relative shares of capital and labor respectively.

Rearranging equation 1 by ∆A/A, we obtain an index measure for technical

change:
∆A

A
=

∆Q

Q
− α ∗ ∆K

K
− β ∗ ∆L

L
(3)

What Solow initially calls technical change was hence defined as Total Factor

Productivity. Its function is to measure the portion of output - or the increase

in productivity - which cannot be explained by the amount or proportion of

inputs. However, TFP only includes marketable factors. Nonmarket resources

such as water, air and biodiversity are not captured by TFP as well as other

externalities.

Total Resource Productivity is an approach to expand Total Factor Produc-

tivity by accounting for nonmarket resources. After all, natural resources play

a central role in many productions and they are as scarce as labour or capital.

Thus, its use entails true opportunity costs (Gollop, Swinand, & G., 2001). With

regard to the measurement of TRP, there are several approaches. Gollop and

Swindon (2001) propose both a producer- and a welfare-based model combines

with the calculation of production possibility frontiers. Unfortunately, the C01

data set which is used for the analysis does not provide sufficient information

to replicate this method. Still, an idea which was indeed used by Gollop and

Swindon is the inclusion of a source of undesired output into the calculations.

The same will be included in this analysis in the form of biodiversity loss to ob-

tain results for dynamic resource productivity in palm oil production in Jambi,

Indonesia.

In this chapter, the necessity to analyze palm oil production with regards to
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efficiency was highlighted. Subsequently, one of the most renowned approaches

to calculate efficiency was introduced, the Farrell efficiency. The methodology

of this analysis is based on this approach. Finally, the concepts of Total Factor

Productivity and Total Resource Productivity were outlined - both measures are

of paramount importance when comparing the results in chapter 6.
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4 Data

4.1 C01 sample

This chapter describes the summary statistics and the collection method of the

data set used for the analysis. The data set is based on a total of 96 observations,

divided into the three survey waves 2012, 2015 and 2018.

4.1.1 C01 sample: Number of observations and survey method

All the present data were collected within the Collaborative Research Centre 990:

Ecological and Socioeconomic Functions of Tropical Lowland Rainforest Trans-

formation Systems. The C-group particularly analyzes the human dimensions of

land use transformation from rain forest into rubber and palm oil plantations. Its

database consists of nearly 800 households in around 100 villages in five regencies

of Jambi province. However, the C01 group only consists of a smaller subsample.

Table 1: Observations used for the analysis

Wave

2012 2015 2018 Total

No. of observations including rubber 199 221 219 639

No. of observations before restriction 37 44 45 126

No. of observations after restriction 27 35 34 96

Table 1 gives an overview about the total number of C01 observations. The

second and third row report only those observations who were collected at palm

oil plots. As some input, plant richness or size data is missing, the sample had

to be further restricted to those observations reported in the third row. A de-

tailed report over which households are reported in which year is attached in the

appendix in table 6.

Most of the production variables such as agrochemical use and CPO produc-

tion were collected by a questionnaire in each wave. Besides, the C01 project

group collected plant richness and biodiversity data in the respective fields. For

this purpose, a 5*5-meter square was staked out at the same spot on the field at

each data collection wave. The exact position of the field was determined with

24



4 DATA Dynamic Resource Productivity

GPS data. On these squares, the number of different species and the number of

individuals of each of these species were surveyed. Both figures are used to receive

measures of biodiversity, such as the Shannon Index and the Effective Number of

Species (ENS).

While the number of observations is relatively small, it is necessary to apply

methods which are suitable for small samples. For instance, if no normally dis-

tributed error terms can be assumed, it is not possible to apply a classic linear

model. The use of non-parametric methods is appropriate for the present data

set since they do not assume a functional form or a normal distribution of the

error terms. The methods that are used throughout this research to obtain results

regarding dynamic efficiency and resource productivity are presented in detail in

chapter 5.

4.1.2 Descriptive statistics of input and output variables

Summary statistics of the input and output variables used for the analysis of palm

oil production in Jambi, Indonesia are reported in table 2. Note that the average

CPO production decreased by 27.6% from 40,050kg in 2012 to 29,002kg in 2018.

Median figures also decreased from 32,820kg in 2012 to 27,300kg in 2018. Thus,

there is a substantial decrease in CPO production.

The input variables agrochemical use, labour and plot size are the ones used

as input factors in our model. Agrochemical use sums up the use of fertilizers,

pesticides and herbicides. It is measured in metric kilograms. Labour describes

man hours and the plot size represents the cultivation area. Concerning the

dynamics of these input variables, there is another substantial decrease over the

period: the average man hour employed in production decreased by 24.9% from

3,152h in 2012 to 2,368h in 2018.

Figure 5 shows the evolution of the production variables illustrated by one

box plot per year of observation. Most of the median figures represented by the

bar in the middle of the plot decreased over time, except labour which decreased

from 2012 to 2015 and increased again in 2018.

While there could be multiple explanatory approaches for the substantial re-

duction of CPO production in the sample, the principal reason is most probably
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Figure 5: Evolution of production variables

due to a shift in climatic conditions caused by El Niño. Its effects have already

been described in subchapter 2.3.3. As its impacts are supposed to be particularly

strong on the 2015 wave, the largest decline of CPO production took place from

2012 to 2015. However, as the first and third quartile converge in the third plot,

the lower production has further consolidated in 2018. Additionally, the amount

of agrochemicals used for palm oil production has also decreased in the sample:

the average agrochemical use decreased by 46.5% from 1,479kg in 2012, and by

a similarly high rate from 919kg in 2015 to only 570kg in 2018.

There is a data problem regarding the plot size: since the cultivation areas are

rather small, the figures were strongly rounded in the survey. Therefore, 49 out of

96 observations report a plot size of 2, although many of them are certainly only

close to 2 and not exactly 2 hectares. As figure 5 illustrates, the median remains

at 2 hectares of plot size and there is little change in these dimensions. After

all, the plot size cannot be changed easily. Accordingly, the median remained

constant at 2 hectares.
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Table 2: Summary figures on input and output variables

Wave Min. 1st quartile Median Mean 3rd quartile Max. Std. deviation

Production (CPO in kg)
2012 38 16,860 32,820 40,048 46,360 191,184 38,659
2015 960 15,075 27,900 34,238 45,600 204,000 33,194
2018 3,000 18,000 27,300 29,002 36,000 96,000 20,717

Agrochemical use (in kg)
2012 1 233 624 1,062 1,479 3,252 1,045
2015 1 204 613 919 1,437 6,000 1,143
2018 2 15 253 570 698 2,523 743

Labour (in hours)
2012 9 1,290 2,014 3,152 3,425 31,008 5,168
2015 25 1,404 1,960 2,356 2,900 7,830 1,689
2018 48 1,676 2,269 2,368 2,704 5,772 1,217

Plot size (in hectares)
2012 0.25 1.62 2.00 2.38 2.00 12.00 2.10
2015 0.25 1.38 2.00 2.15 2.00 12.00 1.93
2018 0.25 1.50 2.00 1.94 2.00 6.00 1.22
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5 Methodology

Unlike other research projects, in our case the distinction between theory and

methodology is not straightforward. The Data Envelopment Analysis implies

both a theoretical and a methodological concept. By means of the DEA it is

possible to obtain measures of technical change and efficiency for samples that

are either too small or whose error terms are not normally distributed. Both apply

to our case. The following chapter describes the reasoning behind the choice and

the fundamental points of the method which is used to derive the results of our

analysis.

The first subchapter describes the assumptions, procedures and distinctions of

the Data Envelopment Analysis (DEA). In the second subchapter the Malmquist

Productivity Index (MPI) is introduced, which allows DEA based calculations

for panel data. The last part deals with the construction of a Directional Dis-

tance Function (DDF) that includes a source of unwanted outputs in the DEA

calculation.

5.1 Benchmarking with Data Envelopment Analysis

5.1.1 Assumptions

The two main underlying sources for this chapter are An introduction to efficiency

and productivity analysis by Coelli et al. (1998) and Benchmarking with DEA,

SFA, and R by Bogetoft & Otto (2011).

The first term which is relevant for this study is benchmarking. Its underlying

idea is the systematic comparison of the economic performance of one firm against

another firm (Bogetoft & Otto, 2011). Two of the methods for benchmarking

which can be applied to a data set similar to ours are the Stochastic Frontier

Analysis and the Data Envelopment Analysis. Both rely on econometric methods

and mathematical programming.

The main assumptions about the analyzed firms for DEA are

1. Free disposability: a farmer can produce less output with more input

2. Convexity: any weighted average of production plans is feasible.
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3. Returns to scale: scaling and rescaling is possible. The strongest assump-

tion is that there are constant returns to scale, meaning γ ≥ 1 .

4. Additivity and replicability: if a production plan is feasible, so is its sum.

In a classic economic analysis, perfect efficiency of all firms is assumed. The

advantages of Farrell efficiency and the DEA is that imperfect actors can be as-

sumed. In contrast to SFA, DEA does not imply a certain distributional pattern

of the farmers’ efficiencies. Additionally, no functional form is assumed. Accord-

ingly, the method is non-parametric. Instead, a frontier function is estimated

based on the most efficiently producing units in the sample. The outcome of the

DEA depends not only on the input and output quantities vectors, but also on

the fine adjustment of the index, e.g. regarding the RTS orientation.

The advantage of this measure is clearly that despite the limited size of a sam-

ple, meaningful conclusions can be made regarding the evolution of productivity

and efficiency. One of the main drawbacks is that non-parametric methods such

as the DEA lead to results that cannot be extrapolated to other contexts.

5.1.2 Minimal extrapolation

A special feature of DEA is how the technology approximation is built. It uses,

as mentioned before, mathematical programming.

The first step in DEA is to estimate the technology of each firm. It is done by

applying the minimal extrapolation principle which means that T* is the smallest

subset of a data matrix which satisfies the aforementioned assumptions. (Bogetoft

& Otto, 2011)

In the following, the idea of minimal extrapolation and its combination with

the concept of Farrell efficiencies are combined.

T ∗(γ) ={(x, y) ∈ Rm
+ × Rn

+| ∃λ ∈ ΛK(γ) : x ≥
K∑
k=1

λkxk, y ≤
K∑
k=1

λkyk}

where

ΛK(crs) ={λ ∈ RK
+ |

K∑
k=1

λkfree} = RK
+

(4)
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where T ∗(γ) describes an estimated technology set which is obtained under the

principles of minimal extrapolation. x represents a set of inputs of length m and

y a set of outputs of length n. Both are expressed by real and positive numbers.

The same mathematical set is the smallest possible set which contains the data

which fulfill the aforementioned assumptions. The letter γ serves as a placeholder

for a model which implies a set of assumptions, as we have formulated above. The

assumptions made for our model employ the use of constant returns to scale. The

use of CRS, again, allows full convexity and rescaling in the model and therefore

requires the largest of all possibly implied technologies (Coelli, Rao, & Battese,

1998).

However, the larger the technologies, the more optimistic we are in granting

improvement potential to each firm. This also makes the firms appear less efficient

in the model than with e.g. VRS.

Ep = E((xp, yp);T∗) = min{E ∈ R+|(Exp, yp) ∈ T∗} (5)

5.1.3 Obtaining efficiency scores by mathematical optimization

Equation 5 combines the minimal extrapolation problem with the method to

obtain Farrell efficiency scores. E describes the Farrell efficiency of the firm p.

xp is a set of inputs of firm p which can produce a set of output yp.

min
E,λ1,...,λK

E

s.t.

xpi ≥
K∑
k=1

λkxki , i = 1, ...,m

yp ≤
K∑
k=1

λkxkj , j = 1, ..., n

λ ∈ ΛK(γ).

(6)

In equation 6 the term T ∗(γ) from equation 4 is inserted and results in a mini-

mization problem. As a result of this mathematical optimization procedure, we

obtain an input efficiency for each firm p.
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The main modification that has to be done for extracting results for output

efficiency is to change the mathematical optimization from a minimization to a

maximization problem. The technology, i.e. the input and output sets remain

unchanged. Thus, the relationship between the two efficiencies is F = 1
E
, where

F describes the output efficiency.

As described by Coelli (1998), the DEA involves the use of linear programming

methods to construct a non-parametric piece-wise surface - or frontier - including

all the data points. Each data point representing a decision making unit, in our

case palm oil farmers. In contrast to the Stochastic Frontier Analsis (SFA), the

surface’s form is not imputed but completely determined by the most efficient

data points in the distribution (Coelli et al., 1998). Consequently, the efficiency

value of these farmers is exactly 1.0 or 100%.

In order to apply a DEA, it must ultimately be decided whether

• there are constant CRS or variable returns to scale (VRS) and

• there is input or output orientation.

5.1.4 Returns to scale

To perform a DEA, a distinction must be made between VRS and CRS. Variable

returns to scale consist of constant, increasing and decreasing returns to scale.

By intuition, the application of this distinction within the DEA makes sense

for our data. However, the CRS assumption is more commonly used and the

interpretation of its outcomes is less complicated. Therefore, there is a trade-off

between the accuracy of the method and the meaningfulness of its results. The

correct procedure is to run a test over all our observation and test for its returns

to scale. This will be done in chapter 6.

Figure 6 depicts the construction of a frontier based on the CRS orientation.

It draws a straight line based on the two most efficient data points, in this case A

and C who thus represent 100% efficiency. The efficiency figures of the remaining

data points are calculated based on the distance to the illustrated CRS frontier.

These can take values from 0 to 1, or 0% to 100%.

Figure 7 depicts the construction of a frontier based on the VRS orientation.

The frontier is again based on the most efficient data points, but it is no straight
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Figure 6: Hypothetical data distributed with respect to their efficiency under
CRS hypothesis.

Source: Coelli et al., 1998

line. Thus, its functional form fully depends on the data points in the sample.

However, it is concave by definition. Due to this fact, B reports, as in figure 6,

imperfect efficiency.

An analysis was pursued concerning efficiency change of banks in Czech Re-

public from 2001 to 2011 by Repková (2013). It was pointed out that by applying

a Dynamic DEA the results between CRS and VRS differed. The average effi-

ciency under CRS orientation ranged from 80% to 92%, while under it ranged

from 90% to 98% under VRS orientation (Repková, 2013). These findings indi-

cate that it is possible by applying the same method with different orientations

on the same data may lead to different results. Yet, both results point at least

at the same direction. Thus, for the context of analyzing dynamic resource pro-

ductivity of palm oil production in Jambi, Indonesia it might be sensible to test

which returns to scale type to apply to our sample. In subchapter 6.1 the sample

is therefore tested with regard to its returns to scale.

5.2 Malmquist Productivity Index

So far, we established the assumptions and chose the appropriate method for the

analysis of dynamic efficiency and resource productivity. Farell efficiencies and

the DEA do not take the panel structure of the data set into account because they

are cross-sectional measures. Therefore, another method is needed to generate

results for panel data. In order to capture the efficiency change over time, the
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Figure 7: Hypothetical data distributed with respect to their efficiency under
VRS hypothesis.

Source: Coelli et al., 1998

DEA based Malmquist Productivity Index (MPI) is the appropriate measure.

The basic figure of the framework is the DEA based efficiency Ei
s,t as it was

obtained in the beforehand subchapter. Again, i is an index number for the

individual firms, s and t describe two points in time, t subsequent to s.

The calculation of the index is described by:

Mqs =
E(t, s)

E(s, s)
(7)

Mqt =
E(t, t)

E(s, t)
(8)

The Mq stands for the Malmquist index for each point in time s and t. It is

simply the division of the Farrell efficiency scores in each point in time. Thus, if

there is an efficiency increase in one period with respect to the other, the MPI

will return a number which is greater than 1. As there is no preference of one

period over the other, there are two possible directions of the efficiency change:

from s to t, as in Mqs and from t to s, as in Mqt. The MPI is obtained by

calculating the geometric mean of these two:

Mq(s, t) =
√
Mqs ∗Mqt =

√
E(t, s)

E(s, s)
∗ E(t, t)

E(s, t)
(9)

However, so far we neglected a central figure which interferes with the outcome
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of the MPI. We need to take the general change of technology of one period with

respect to the other into account. This general efficiency change is described by

EC(s, t) in the following equation:

Mq(s, t) =

E(t, t)

E(s, s)︸ ︷︷ ︸ ∗
√
E(t, s)

E(t, t)
∗ E(t, t)

E(s, t)︸ ︷︷ ︸
EC(s, t) TC(s, t)

(10)

Both can be counteracting or additive. When interpreting the MPI, it is im-

portant to analyze both figures separately in order to arrive at a meaningful

conclusion.

Figure 8 shows the decomposition of the MPI into technical change and tech-

nical efficiency change (Emrouznejad & Thanassoulis, 2010). Technical change

refers to a change in innovation that affects the entire sample. Technical effi-

ciency change describes the efficiency of the individual actors in relation to the

benchmarkt technology, also known as catch up. Let x denote a level of input

and y a level of output. For this graph, one input and one output are assumed,

although multiple inputs and outputs could be employed generating a similar

picture. Two production function depict the amount of output which can be pro-

duced for a given amount of input. L(t) depicts the production frontier for period

t and L(t + 1) for period t + 1. According to Färe et al. (1994) the change of

total productivity of a unit can be decomposed in the general shift of the efficient

boundary(Färe, Grosskopf, Norris, & Zhang, 1994; Emrouznejad & Thanassoulis,

2010).

The point A(t) represents an arbitrary input output bundle for period t and

A(t + 1) for the subsequent period t + 1. When assuming input orientation, the

ratio OC/OB represents a measure of input based efficiency. This measure, by

logic, is between 0 and 1. If point A(t) lies on the frontier, the efficiency measure

would equal 1 or 100% input-oriented efficiency. Thus, for A(t) which is not 100%

input efficient, the same amount of output at H could be achieved by reducing

the inputs and moving from point B to point C.
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Figure 8: Malmquist Productivity Index and its decomposition (Emrouznejad &
Thanassoulis, 2010)

When assuming output orientation, however, the approach is similar but this

time, moving vertically: the ratio OH/OK represents a measure of output ori-

ented efficiency. For the same amount of employed inputs at B, it would be

possible to produce the output level K instead of H.

5.3 Measuring dynamic resource productivity

5.3.1 Measuring dynamic resource productivity: Effective number of
species

To calculate the DDF accordingly, this measure is converted so that its loss can

serve as a measure of undesirable output. The aim is to obtain a figure which

reflects the loss of α diversity. This subchapter gives a brief introduction to what

dimensions of biodiversity exist and which one is used for the further analysis in

this thesis. Subsequently, the calculation of the ENS is explained.

When referring to rain forest destruction, what one usually has in mind is

the destruction of trees and plants. Nonetheless, biodiversity includes a lot more

factors than only the quantity of plants on one land unit. This measure is called
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plant richness. Beyond plant richness, biodiversity includes soil biodiversity which

reflects the variability among living organisms - visible and invisible ones, such

as fungi, bacteria, protozoa or nematodes (FAO, 2020).

Depending on the size of the examined area, we speak of α, β and γ-diversity.

The α-diversity refers to the diversity in one particular biotope or habitat. The β-

diversity is the ratio between regional and local species diversity, thus it examines

a wider scale while γ-diversity describes and compares the diversity of whole

ecosystems, e.g. rain forests in different regions. By definition, α and β diversity

are multiplied to γ diversity(Jost, 2006):

α ∗ β = γ (11)

In our case, we are not able to attempt a description of β or γ-diversity with only

one variable describing plant richness in the dataset. However, α-diversity can

be derived with this data.

One method to represent α is by counting the species. The problem with the

mere counting of species such as through the species richness (SR) figure is that

it values particularly rare species disproportionately high. On the other hand,

measures such as the Simpson diversity index - which is similarly constructed

as the Shannon index for γ diversity - assign a disproportionately high value to

common species. A compromise between both is the effective number of species

(ENS), as it does not overrate neither extremely common nor extremely rare

species (Dalheimer, Brambach, Yanita, Kreft, & Brümmer, 2020; Jost, 2006). It

is calculated by the exponential of the Shannon Index for α diversity:

ENS = exp(−
∑

(log pi ∗ pi) (12)

With p representing the relative abundance of a species i. The lower the value

of the ENS, the lower the α diversity on the plot. In the data set used for this

study the ENS ranges from 1.33 to 9.8, the average ENS of the sample is 4.89.

However, this equation still needs to be converted into a source of undesirable

output. The expression that is ultimately used to calculate the distance function
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is

Yundesirable =
1

exp(−
∑

(log pi ∗ pi)
(13)

or

Yundesirable = ENS−1 (14)

The equation finally describes the loss of alpha diversity by the inverse of the

ENS. This term can eventually be used as a source of undesired output for the

construction of a DDF.

5.3.2 Measuring dynamic resource productivity: Directional Distance
Function

The method which is used in this thesis to include a source of undesirable output

is the directional distance function (DDF). By using this method it is possible to

add an environmental component to the efficiency calculation. In this study, the

ENS is used as a source of undesirable output.

Let DO denote the Shepard output distance functions which is used in the

MPI to represent technology:

DO(x, y, b) = inf{θ : (
(y, b)

θ
∈ P (x)} (15)

where x represents a set of inputs, y represents desirable output and b rep-

resents bad or undesirable output and P (x) the output set (Chung, Färe, &

Grosskopf, 1997). Although we have two types of output, this function maxi-

mizes desirable and undesirable output simultaneously. However, what we are

looking for is a function that maximizes the desired output while minimizing the

undesired output. For this purpose, the function must be redefined as follows:

−→
DO(x, y, b) = sup{β : ((y, b) + βg ∈ P (x)} (16)

where g represents a directional vector which determinate the scale of both

output types, e.g. g = (−b, y) for b being undesirable and y being desirable

output. Likewise, while still assuming free disposability of inputs and desirable
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Figure 9: Directional distance functions

Source: Chung, Färe & Grosskopf, 1997

output, for the source of undesirable output, weak disposability is assumed.

To illustrate the approach more clearly, figure 9 provides a graphical explana-

tory approach. Again, y denotes desirable output, b denotes undesirable output

and P (x) the output set. A depicts the boundary of P (x), C represents an arbi-

trary point of imperfect efficiency. The classical Shepard’s distance function used

for the calculation of the MPI would result in an efficiency ratio which equals

the value OC/OA. In contrast, the DDF moves in the direction of the boundary

and results in point B which yields the distance ratio BC/Og. This means that

the DDF effectively moved towards more desirable and less undesirable output

according to the directional vector g (Chung et al., 1997).

Likewise, the relationship between the Shepard’s and the directional distance

function can be defined as

−→
DO(x, y, b; y, b) = (

1

DO(x, y, b)
)− 1 (17)

or

DO(x, y, b) =
1

1 +
−→
DO(x, y, b)

(18)

assuming that g = (y, b).

The results of the DDF can be described as a measure of environmental perfor-

mance. As there is only one source of undesirable output included, the approach

is not far-reaching enough and it contains too few biodiversity measures to de-

scribe environmental efficiency. However, it is quite possible to speak of a fair
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representation of dynamic resource productivity in the context of environmental

performance.

This chapter responded to the characteristics of the data set by explaining why

non-parametric methods are suitable for an analysis of efficiency and resource

productivity. Subsequently, the assumptions and procedures for calculating a

DEA were explained. To address the panel structure of the data, the DEA based

MPI was explained and graphically illustrated. Finally, the concept of DDF

was used to determine dynamic resource productivity, which adds a source of

undesirable output to the MPI calculation.
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6 Results

In chapter 5, the two main non-parametric approaches to calculate efficiency

scores were introduced. The MPI calculating a TFP measure reflecting con-

ventional efficiency change and the DDF calculating environmental performance

change as a measure of dynamic resource productivity. In this chapter, both

methods are applied to the restricted palm oil production data set that was in-

troduced in chapter 4. This chapter is divided into five subsections: In the first

subchapter, the MPI results are outlined. In the third subsection, the ENS that

was introduced in subchapter 5.3.1 added as an undesired output to the model

and efficiency results are calculated the DDF approach. Finally, both MPI and

dynamic resource productivity results are discussed in view of the research ques-

tions and some policy advices are derived from the results.

6.1 Returns to scale test

In subchapter 5.1.4 it was pointed out that for any DEA calculation, either con-

stant or variable returns to scale (RTS) need to be assumed. Simar and Wilson

(2002) elaborated a test for RTS. The two main test statistics for the test are

defined as follows by the authors:

Ŝcrs1n = n−1
n∑
i=1

D̂crs
n (xi, yi)

D̂vrs
n (xi, yi)

(19)

Ŝcrs4n = Med{D̂crs
n (xi, yi)}ni=1/Med{D̂vrs

n (xi, yi)}ni=1 (20)

Where the input x can produce an output y. D represents a Shepard’s output

distance function. Equation 19 describes a mean of ratios Ŝcrs1n , while equation

20 describes a ratio Ŝcrs2n of the medians. The authors clarify that medians and

trimmed means are used rather than arithmetic means.

Table 3 shows the results of the test for constant and non-increasing RTS. Ŵ4.5

is based on equation 19 and Ŵ4.8 on equation 20. Both the Ŵ4.5 and the Ŵ4.8 test

statistic do not reject the null hypothesis of non-increasing RTS. Furthermore,

Ŵ4.5 does not reject the null hypothesis of constant RTS. Taking both test results

into account, it might be concluded that constant returns to scale can be correctly
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Table 3: Returns to scale test

(1) (2)

Test for non-increasing RTS 0.81 -0.035

Test for constant RTS 0.645 -0.074*

Note : * H0 rejected; (1) = Ŵ4.5 test statistic;
(2) = Ŵ4.8 test statistic

assumed for further analysis and therefore used for the calculation of the MPI

and DDF in the following parts.

6.2 Malmquist Productivity Index, technical change and

technical efficiency

Table 4: MPI results

Period 2012-2015 2015-2018 2012-2018

Measure Median Mean Median Mean Median Mean

MPI 0.930 1.512 1.083 1.245 0.956 3.137
Technical change 1.063 1.278 0.954 0.956 1.123 1.219
Technical efficiency change 1.000 1.189 1.050 1.345 0.952 2.524

Observations 23 30 22

Based on the methodologies described in subchapter 5.1 and 5.2, this sub-

chapter points out the results of the Malmquist Productivity Index (MPI). The

production function which is used for the calculation of the DEA based MPI con-

sists of:

A source of desirable output:

• Crude palm oil production measured in kilograms per year

Three input variables:

• Agrochemicals measured in kilograms

• Labour measured in man hours

• Plot size measure in hectares
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The MPI results consist of three scores: the general Malmquist-Productivity

Index, a score for technical efficiency change and a score for technical change. The

general MPI score can be interpreted as Total Factor Productivity (TFP). The

mean and median numbers of these three figures are shown in table 4. Output

orientation and CRS were assumed to calculate the results.

The first interesting finding is that there is a significant gap between the mean

and median figures. There are two ways to explain the heterogeneity of median

and mean results:

1. The number of observations is not constant. Only 18 observations are avail-

able as a complete time series in all three waves. Still, for the 2015-2018

period there are 30 observations. Consequently, the disparity between mean

and median is not as high as in this period for the general MPI and for tech-

nical change.

2. As the sample is small, each observation which is reported - or left out -

in one wave has a strong influence on the mean and the median of each

measure. The average figures might be distorted by outliers.

The average TFP change from 2012 to 2015 is 1.512 which means that the

average efficiency increased by 50.1% in 2015 with respect to 2012. In 2018, the

average increase of TFP was 24.5% with respect to 2015. For the period from

2012 to 2018, TFP increased strongly on average, while the median figure was

contracting. This indicates that the distribution of the data of this period is

skewed. The average numbers of technical change and efficiency change show an

overall increase for the same period. However, the median figures only show an

increase of 12.3% for technical change, while technical efficiency decreased slightly

by 4.8%.

Technical efficiency change was positive throughout all the average figures: It

grew by 18.9% from 2012 to 2015 and by 34.5% from 2015 to 2018. Only the

median value indicates a slight reduction in technical efficiency for the period

from 2015 to 2018. The innovation shift or technical change figures are more

ambivalent: the average technical change increased by 27.8% for the period from

2012 to 2015, but both median and arithmetic mean for the period from 2015 to
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2018 show a decline. This could be possibly explained by lagged or persistent El

Niño effects.

The results are varied. However, it can be said for technical efficiency that

the development in recent years has been predominantly positive. Furthermore,

the average TFP change is positive, which summarizes that the evolution of the

conventionally measured efficiency in the sample was positive.

6.3 Dynamic resource productivity

6.3.1 Dynamic resource productivity: Measurement of environmental
performance

The MPI results in table 4 showed that TFP change was positive during the

observation period. Yet, the average technical change was negative from 2012 to

2015 and it was therefore outweighed by the positive technical efficiency change

in the same period. In this subchapter, the measurement of dynamic efficiency

is extended by including an undesirable output. The results of the DDF are

measured by the variable environmental performance, which is an indicator of

resource productivity.

Initially, a DDF is constructed with the same three input variables as be-

forehand: plot size, labour and agrochemical use. As before, CPO production is

included as a source of desirable output. Additionally, a source of undesirable

output, indicated by ENS−1, represents the loss of biodiversity on the plots. The

results of the DEA performed with the DDF approach are reported in table 7.

Partly due to the small data set of 98 observations over three waves, the results

are quite heterogeneous. Thus, it is reasonable to use as many different forms

of data visualization to arrive at meaningful conclusions. Figure 10 shows that

the inefficiency distribution of the three waves is harmonic, as none of the three

distributions draws a strongly differing picture. The distribution shifted slightly

to the right each year and therefore towards a higher average inefficiency or lower

environmental performance. Furthermore, it becomes evident that the scores are

not normally but binomially distributed, since two peaks for each kernel density

curve can be observed. This skew distribution also pulls the mean further away

from the median.

43



6 RESULTS Dynamic Resource Productivity

Figure 10: Density of inefficiencies per wave

Note: Inefficiency = 1 - environmental performance

An overview about the complete results of the DDF calculation per household

is provided in the appendix in table 7. To anticipate the central result: the average

level of environmental performance decreased over the years. In 2012, the average

environmental performance was 0.55 or 55%. In 2015, it declined to 0.542 and in

2018 it further decreased to 0.385. Thus, the average environmental performance

decreased by a similar rate in each wave. The median figures draw a similar

picture: the median inefficiency level started at 0.553 in 2012 and increased by

20% to 0.664 in 2015. Subsequently, the median inefficiency further increased to

0.764 in 2018. However, the environmental performance reduction decelerated by

25%.

The two columns on the right-hand side display the growth rates of the in-

efficiency scores for each household from one wave to the subsequent one. The

fourth column shows the growth rate for each household from 2012 to 2015. 17

household could be included in this calculation. This is partially attributable to

less observations in 2012 and partially due to an increase of inefficiency from a

level of 0 which makes the result incalculable. For instance, the households 415

and 460 report an infinite growth due to this circumstance. For that reason, they
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Table 5: Stationary MPI and environmental performance

Year MPI ENVPERF Obs.

2012 0.8003647 0.4855515 23
2015 0.6199037 0.4296506 30
2018 0.6556536 0.3879536 30

Note: MPI = Malmquist Productivity In-
dex indicator for Total Factor Productiv-
ity; ENVPERF = Environmental perfor-
mance

are not included in the calculation of the average growth rate - which is 0.294.

Implicating that the environmental performance of the households declined by

29.4% on average.

Regarding the individual figures, only two out of 17 households, namely 387

and 488, report a decreased inefficiency - or increased environmental performance

- for that period. 14 households report an environmental performance decline.

With reference to the changes from 2015 and 2018, a similar picture is drawn.

Out of 23 households, 5 report a decreasing inefficiency and thereby increasing

environmental performance. 18 households increased their inefficiency and de-

creased their environmental performance. Two of them reported a level of zero

inefficiency for 2015, which is why they were not included in the calculations. The

five remaining values are 0 which means that these households remained constant

in terms of environmental performance.

The mean growth rate of DDF based inefficiency is 0.143 from 2015 to 2018.

However, the median growth rate is only 6.9% - or 2.3% per year. 10 observations

did not report a decreasing environmental performance for this period - substan-

tially more than from 2012 to 2018. The results of the DDF calculation show

that the environmental performance from 2012 to 2018 was consistently negative.

We will discuss this further in the next subchapters.

6.3.2 Dynamic Resource Productivity: Combination, comparison and
interpretation of MPI and DDF results

Up to this point it was shown that the evolution of technical efficiency over the

observation periods was positive and that technical change increased from 2012

to 2015 and subsequently had a slightly negative development from 2015 to 2018.
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In this subchapter these results are compared to the results of dynamic resource

productivity that were calculated in subchapter 6.3.1.

Initially, table 5 depicts the mean non-dynamic - or stationary results of the

MPI and environmental performance. The results outline the starting point in

terms of efficiency in each year of observation. The MPI based measure of TFP

is shown in the second column. They are interpreted as the level of Total Factor

Productivity in each year of observation. Evidently, TFP decreased significantly

from 0.8 or 80% in 2012 to 0.62 in 2015. In 2018, the TFP level recovered slightly

and increased to 0.656 or 65.6% efficiency in terms of TFP.

The third column of table 5 portrays the score of environmental performance

or total resource productivity. In both periods the figures decreased at a relatively

constant rate: from 2012 to 2015 environmental performance decreased by 13.3%

from 0.486 to 0.429. In 2018, it decreased by another 10.76% with regard to 2015

and achieved a level of 0.388 - or 38.8% of environmental performance. Hence,

there is evidence for a negative evolution of resource productivity measured by

environmental performance over the entire observation period.

While technical change and the general MPI were more fluctuative, it was al-

ready shown in table 4 that the average technical efficiency increased continuously.

Therefore, the developments of technical efficiency and resource productivity can

be described as divergent. This could be a sign for a trade-off that is growing

over time between both figures.

Figure 11 and 12 depict the change of TFP and the respective growth of

environmental performance of the palm oil farmers for the periods 2012 to 2015

and 2015 to 2018. The numbers imply the farmers’ household IDs. Figure 13

shows the same measurements for the whole observation period from 2012 to

2018. The dashed lines represent the thresholds of a positive (> 1.0) or negative

(< 1.0) change of either measure. Thus, the data points which are in the lower

left quadrant report negative TFP change and a negative change of environmental

performance. The data points in the upper right quadrant report positive TFP

and environmental performance change, while the data points in the lower right

quadrant report a positive TFP change and a negative environmental performance

growth rate. The same axis scaling was chosen for each graph to ensure the
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comparability. The continuous line serves as an indicator for the direction of the

correlation of both measures. It is based on a linear model calculation.

It has to be noted that due to the unbalanced panel the quantity of data

points on each graph differs. To be sure that the results are not distorted by

the additional households of the unbalanced panel, the same graphs were written

with a sample restricted to households of the balanced panel. As a result, the

direction of the correlations did not change, by which it was decided to include

the unbalanced households in the graph. Additionally, some outliers distorted the

results and were therefore excluded.

In figure 11 most of the data points are in the lower left quadrant which means

that the change of both measures was preliminarly negative. However, farmers

reporting a less negative TFP change also tend to perform less negatively in terms

of environmental performance. For this period, it seems that an improvement of

TFP compatible with the improvement of environmental performance. However,

most of the data points are located in the lower left quadrant and thus undergo

a negative development for this period in terms of TFP and environmental per-

formance.

In figure 12, there is no significant relationship between both measures. Im-

provements in TFP are independent of improvements in environmental perfor-

mance. The slope of the correlation line is not steep enough to assume the direc-

tion of the slightly positive correlation to be significant. In the period of 2012 to

2015, most of the data points report a negative change in terms of environmental

performance. Regarding TFP change there is a divided picture: about half of the

farmers report a positive TFP change and the other half a negative change.

The most striking result is depicted in figure 13. For the whole observation

period from 2012 to 2018, there is a clear negative correlation between TFP and

environmental performance change. Again, the majority of the farmers reported

a negative environmental performance change, while 8 out of 18 farmers reported

a positive TFP change. Not a single household reported a positive change in both

measurements. It can be concluded that there is a clear trade-off between TFP

change and environmental performance change for the entire observation period.

47



6 RESULTS Dynamic Resource Productivity

Figure 11: Environmental performance growth and Total Factor Productivity
change from 2012 to 2015

Note: Number of observations: 16

Figure 12: Environmental performance growth and Total Factor Productivity
change from 2015 to 2018

Note: Number of observations: 25
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Figure 13: Environmental performance growth and Total Factor Productivity
change from 2012 to 2018

Note: Number of observations: 18

6.4 Discussion

6.4.1 General discussion

To answer the research question, the results obtained so far will be discussed in

this subchapter. Firstly, I will elaborate on the implication that the obtained

results have on current farming practices. Secondly, and before arriving at the

final conclusion, I derive some policy advices from said results.

Subchapter 6.3.2 showed that the MPI measurement for TFP change and

environmental performance increasingly diverged over time. Normally, one would

assume that if TFP develops positively, resource productivity would also develop

in the same direction. The results have shown, this is not the case. Referring to

the research question, no clear answer can be found in view of these figures.

In terms of technical change and technical efficiency described by the measures

of the MPI, the development was positive. Thus, the hypothesis of improving dy-

namic efficiency can be verified in terms of conventional output. While technical

change was positive from 2012 to 2015, it was negative from 2015 to 2018. Evi-

dently, there was a negative technology shift during that period. This is especially

relevant since the El Niño effects were already captured in the observations from
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2015. Simultaneously, the average technical efficiency increased between 2012

and 2015 and incrementing even steeper from 2015 to 2018.

Regarding resource productivity, from 2012 to 2015, the environmental per-

formance decreased by 29.4% and subsequently by 14.3%. The hypothesis of im-

proving dynamic resource productivity in palm oil production in Jambi, Indonesia

cannot be confirmed, at least given the information provided by the present data.

There can be many reasons for this. The first suspicion is that the inclusion of

the ENS as undesirable output is mainly responsible for the negative evolution

of resource productivity. However, this is contradicted by the fact that the ENS

decreased strongly from 2012 to 2015 but increased again in 2018. It is possible

that the resource productivity decline was mainly triggered by the decline of the

technical change in the period from 2015 to 2018.

As mentioned above, the gap between technical efficiency and resource pro-

ductivity has widened over the observed period. In this context it is important

to consider that the CPO production declined significantly from 42,683 kg in

2012 to 30,772 kg in 2018. The efficiency divergence in the context of a reduced

production could be interpreted as a more careful input use by the farmers. Fur-

thermore, the average figures of man hour and agrochemical use decreased over

time, especially from 2012 to 2015. This seems logical due to a less extensive use

of agrochemicals being usually one of the consequences of employing less man

hours.

Regarding the increased scarcity of resources, one could think of three poten-

tial settings:

1. input prices increased while the farmers’ purchasing power remained con-

stant or decreased slightly

2. the farmers’ purchasing power decreased while input prices remained the

same

3. both, input prices and farmers’ incomes decreased simultaneously

The data of this study does not allow for the confirmation of any of these

potential trajectories. However, the fact that CPO production decreased heavily
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makes the second hypothesis most likely. El Niño has reportedly hit the Indone-

sian palm oil production and this exogenous shock resulted in a decline in palm

oil production - and consequently, the reduction in farmers’ incomes (Azlan et

al., 2016).

Another way to interpret the findings is by assuming that palm oil farming

could have lost importance for smallholders, as farming conditions worsened due

to El Niño. After all, smallholders might seek alternative sources of income the

event that they expect a worse harvest in the future. Consequently, this would

be reflected by reduced employment of man hour per farmer, as it is the case in

our sample. As shown by table 2, man hours decreased from 2012 to 2015 but

subsequently remained at the same level until 2018. It is possible that a strong

reduction in man hour was caused by worse harvests connected to El Niño and

then never picked up again, although it cannot be conclusively proven by the

analysis. By anticipating worse harvests, farmers looked for alternative sources

of income to ensure their livelihoods. Once these are found, the opportunity

costs of reallocating all of the farmers’ labour time in palm oil farming might be

lower than upholding a more diversified set of activities. After all, man hour and

agrochemical figures did not recover in 2018 when the weather conditions were

more favorable for production.

One of the central conclusions that can be drawn out of the results is the

reaffirmation of the trade-off between factor productivity and resource produc-

tivity. According to the results of this analysis, both measures diverged over

time. Therefore, one of the questions raised by the obtained results is how one

is able to increase productivity, technical efficiency and resource productivity at

the same time? While a positive development of these three did not coincide in

the case of this study, it might be possible to bring them together. As it was also

mentioned in chapter 2, major yield improvements could be achieved by applying

best practices and utilizing agrochemicals in a more targeted manner (Azlan et

al., 2016).
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6.4.2 Discussion: policy implications

In the last part of the discussion, I discuss some approaches of bringing together

increased technical efficiency and environmental performance.

Not only this study has raised questions about the efficiency scope of some

current smallholder oil palm farming practices. As elaborated before, there are

figures that indicate an improvement potential of 65% regarding palm oil yields

(Soliman et al., 2016). Although the study pursued in this thesis may not ver-

ify the same figures, mainly due to data limitations - it has become clear that

there is indeed a lot of room for enhancing production. One example for this

is the increase of technical efficiency despite the reduction in CPO production.

While production decreased, the farmers reduced the use of almost all their input

factors. Arguably, this is one of the reasons why their production has become

more efficient: the more targeted and the less excessive the use of e.g. fertiliz-

ers, the better the results. Thus, it might be sensible to introduce or improve

existing training approaches for the appropriate use of fertilizers, herbicides, pes-

ticides and irrigation schemes. This would most likely further improve the plots’

technical efficiency.

Intercropping might be a viable option which can be considered to increase

biodiversity in palm oil production. Additionally, it might even have positive

effects on yields. There is some evidence that appropriate types of intercropping

are beneficial for palm oil growth in early stages and thus lead to higher yields

(Dissanayake & Palihakkara, 2019). This finding is not very intuitive, as one

might argue that other plants on the same plot might absorb nutrients and sun-

light which is necessary for the oil palms to grow. However, when considering

that due to climate change there are more days of excessive heat and sunshine,

increased tree shade might have positive effect on oil palm growth. Likewise,

certain plants have the ability to increase the soil’s fertility and facilitate water

storage. Both might help to further boost oil palm yield. Additionally, as already

described in subchapter 2.4, palm oil can have a positive impact on biodiversity

if it is embedded in a landscape mosaic (Santika et al., 2019).

Another positive aspect for smallholder farming is that intercropping provides

an additional source of income which might be particularly pertinent while the oil
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palms do not yield any crops yet. There is evidence that intercropping maximizes

land use, stabilizes yields and profit and increases food security in smallholder

households (Nchanji, Nkongho, Mala, & Levang, 2016).

While the data and the results of this thesis are not extensive enough to

draw concrete conclusions about existing approaches to enhance environmentally

friendly palm oil production, it is appropriate to mention them. For example,

some RSPO certification requirement include training approaches and best prac-

tices concerning appropriate and targeted input use. Furthermore, it includes the

preservation of especially protected plant and animal species on the plantations.

Therefore these practices would most likely have a positive effect on resource

productivity, as the ENS is positively influenced by the preservation of highly

protected species.

One could also think about introducing ecosystem service payments to remu-

nerate smallholder farmers for deforestation-free cultivation. This can be done

either through a national or international fund. Finally, RSPO certification is

also relatively expensive and many smallholders lack the economic incentive to

cultivate palm oil sustainably.

6.4.3 Discussion: limitations, scope of the contribution and outlook

The main contribution of this analysis is to combine the DEA based methods of

MPI and DDF with data regarding smallholder palm oil production. Including a

variable which reflects environmental damage into economic calculations can be

an effective way to internalize environmental externalities. Another important

contribution to this analysis is provided by the panel structure, which has shown

that resource productivity has decreased noticeably over time.

Further research with similar methods can be carried out, in which several

biodiversity measures are included in the productivity calculations. Especially

the inclusion of increased CO2 emissions as a source of undesirable outputs could

be considered. This would allow a better representation of the real environmental

damage.

The main limitation for the significance of the results is clearly the sample

size. Although it is quite possible to relate the results to the entire small-scale
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palm oil cultivation in Jambi, the degrees of freedom in a data set with less than

100 observations are too few to reliably estimate e.g. linear regressions. One

approach to circumvent this problem could be to bootstrap the sample, which is

beyond the scope of this thesis. However, this would enhance the validity of the

results. Another weakness is that DEA does not allow global comparison of the

results because they are non-parametric and therefore result in different values

in each sample.

Furthermore, a larger data set which includes not only information about

resource productivity but also information on farmers’ income and wealth would

allow us to draw further conclusions about the trade-offs between environmental

protection and wealth creation.
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7 Conclusion

This study aimed to analyze the dynamics of efficiency and resource productiv-

ity in smallholder palm oil production in Jambi, Indonesia from 2012 to 2018.

Based on the results of the methodologies used for the analysis, the development

of resource productivity was negative over the period of the study. However, ac-

cording to conventional efficiency measures the development was positive during

the same period. Accordingly, the answer to the research question depends on

which measures are weighted more heavily.

When mainly focusing on technical efficiency change, its evolution from 2012

to 2018 was predominantly positive. Technical change - or innovation enhance-

ment - however, partly decreased, which is possibly related to the El Niño climate

phenomenon. What becomes clear is that the trade-off between environmental

performance and technical efficiency seems to increase over time.

Additionally, the results indicate that the trade-off between efficiency improve-

ment in terms of a conventional production set and efficiency including environ-

mental measures is increasing over time. Accordingly, one could consider policy

approaches to reconcile the development of both variables.

Furthermore, the results raised the question if the impact of El Niño, which

was only supposed to bed in 2015, have a lasting effect on smallholder oil palm

farming practices. Both CPO production and the use of inputs such as agro-

chemicals and man hours suffered a heavy decline and have not recovered in

2018. These effects could partly explain the diverging of technical efficiency and

resource productivity over the survey period. However, the data used in the study

is not sufficient to illustrate this conclusively.

This thesis contributes to the existing literature concerning the efficiency anal-

ysis of smallholder palm oil production. Additionally, the inclusion of a source

of undesirable outcome reflecting α-biodiversity loss contributes to the existing

literature regarding the internalization of environmental externalities.

The discussion has shown that several policies are conceivable to reduce the

trade-off between conventional and environmentally sensitive efficiency: Inter-

cropping with a diversified landscape mosaic; smallholder training on the correct

application of fertilizers, herbicides and pesticides; payment of ecosystem services.
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All these strategies can promote both the yield of palm oil production and the

biodiversity in the fields.

Palm oil is the most productive of all vegetable oil sources. Its multiple uses

contribute very much to the nutrition and supply of the world population. Ac-

cordingly, the demand and production of palm oil will continue to increase in the

coming years. However, the question after decades of slash-and-burn expansion

is how can palm oil cultivation be made more compatible with ecological sustain-

ability in the future? Policy makers must urgently address this question. This

study has provided some food for thought.
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A Appendix

Table 6: Panel households

Household ID 2012 2015 2018
1 40 1 1 1
2 71 0 1 1
3 181 0 1 1
4 191 1 1 1
5 325 1 1 1
6 326 1 1 1
7 334 0 1 1
8 338 0 1 1
9 342 0 1 1
10 347 0 1 1
11 349 1 1 1
12 351 1 1 1
13 354 1 1 0
14 355 1 1 1
15 358 1 1 1
16 379 1 1 0
17 382 1 1 1
18 385 1 0 1
19 387 1 1 1
20 388 1 1 1
21 395 0 1 1
22 403 0 1 1
23 415 1 1 0
24 416 0 1 1
25 419 1 1 1
26 423 1 1 1
27 424 1 1 1
28 449 1 0 1
29 460 1 1 1
30 467 0 1 1
31 481 1 1 1
32 483 0 1 1
33 485 1 0 1
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34 486 1 1 1
35 488 1 1 1
36 495 1 1 0
37 515 1 0 1
38 615 0 1 1
39 629 1 1 0

Table 7: DDF based inneffieciencies per wave; growth rates between the waves

HHID Inef. 12 Inef. 15 Inef. 18 Growth 12-15 Growth 15-18
40 0.834 0.972 0.972 0.166 0.000
71 - 0.963 0.963 - 0.000
181 - 0.908 0.908 - 0.000
191 0.812 0.888 0.903 0.094 0.016
325 0.503 0.816 0.373 0.624 -0.543
326 0.655 0.717 0.550 0.095 -0.232
334 - 0.452 0.537 - 0.187
338 - 0.372 0.648 - 0.742
342 - 0.664 0.000 - -
347 - 0.696 0.830 - 0.192
349 0.681 0.765 0.772 0.122 0.010
351 0.680 0.752 0.592 0.107 -0.213
354 0.580 0.000 - - -
355 0.677 0.732 0.000 0.082 -
358 0.000 0.000 0.825 0.000 Inf
379 0.551 0.846 - 0.537 -
382 0.652 0.762 0.814 0.168 0.069
385 0.305 - 0.758 - -
387 0.650 0.450 0.812 -0.308 0.806
388 0.651 0.659 0.812 0.012 0.233
395 - 0.315 0.000 - -
403 - 0.267 0.397 - 0.485
415 0.000 0.414 - Inf -
416 - 0.741 0.741 - 0.000
419 0.614 0.818 0.861 0.332 0.053
423 0.467 0.684 0.797 0.464 0.165
424 0.285 0.329 0.630 0.155 0.914
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449 0.000 - 0.864 - -
460 0.000 0.205 0.185 Inf -0.101
467 - 0.000 0.000 - 0.000
481 0.237 0.778 0.842 2.283 0.081
483 - 0.597 0.771 - 0.292
485 0.000 - 0.000 - -
486 0.916 0.000 0.704 - Inf
488 0.838 0.808 0.917 -0.035 0.134
495 0.553 0.612 - 0.107 -
515 0.000 - 0.912 - -
615 - 0.000 0.206 - Inf
629 0.000 0.000 - 0.000 -

Median 0.553 0.664 0.764 0.122 0.069
Mean 0.450 0.542 0.615 0.294 0.143

59



REFERENCES Dynamic Resource Productivity

References

Azlan, A. H., Tui, L.-C., Yaw, S.-K., Selvaraja, S., Rohan, R., Ariffin, I., & Pala-

niappan, S. (2016). Impact of el niño on palm oil production. The Planter(1088),

189–806.

Bogetoft, P., & Otto, L. (2011). Benchmarking with dea, sfa, and r (Vol. 157).

New York, NY: Springer New York. doi: 10.1007/978-1-4419-7961-2

BPS Statistics Indonesia. (2019). Production of smallholder estate crops

by type of crop (thousand tons), 2000-2018*). (data retrieved from BPS

Statistics Indonesia, https://www.bps.go.id/dynamictable/2018/06/21/

1476/produksi-perkebunan-rakyat-menurut-jenis-tanaman-ribu-ton

-2000-2018-.html)

Bundeskabinett. (2020). Themen im bundeskabinett - ergebnisse. Berlin, Ger-

many. Retrieved 8.4.2020, from https://www.bundesregierung.de/breg-de/

aktuelles/themen-im-bundeskabinett-ergebnisse-1739854

Chung, Y. H., Färe, R., & Grosskopf, S. (1997). Productivity and undesirable

outputs: A directional distance function approach. Journal of Environmental

Management , 51 , 229–240.

Coelli, T., Rao, D. S. P., & Battese, G. E. (1998). An introduction to efficiency

and productivity analysis. Boston, MA: Springer US. doi: 10.1007/978-1-4615

-5493-6

Colombo, C. A., Chorfi Berton, L. H., Diaz, B. G., & Ferrari, R. A. (2018).

Macauba: a promising tropical palm for the production of vegetable oil. OCL,

25 (1), 1–9. doi: 10.1051/ocl/2017038

Daemeter Consulting. (2015). Overview of indonesian oil palm smallholder farm-

ers: A typology of organizational models, needs and investment opportunities.

60

https://www.bps.go.id/dynamictable/2018/06/21/1476/produksi-perkebunan-rakyat-menurut-jenis-tanaman-ribu-ton-2000-2018-.html
https://www.bps.go.id/dynamictable/2018/06/21/1476/produksi-perkebunan-rakyat-menurut-jenis-tanaman-ribu-ton-2000-2018-.html
https://www.bps.go.id/dynamictable/2018/06/21/1476/produksi-perkebunan-rakyat-menurut-jenis-tanaman-ribu-ton-2000-2018-.html
https://www.bundesregierung.de/breg-de/aktuelles/themen-im-bundeskabinett-ergebnisse-1739854
https://www.bundesregierung.de/breg-de/aktuelles/themen-im-bundeskabinett-ergebnisse-1739854


REFERENCES Dynamic Resource Productivity

Dalheimer, B., Brambach, F., Yanita, M., Kreft, H., & Brümmer, B. (2020). On

the palm oil-biodiversity trade-off: Environmental performance of smallholder

producers.

Disdier, A.-C., Marette, S., & Millet, G. (2013). Are consumers concerned

about palm oil? evidence from a lab experiment. Food Policy , 43 , 180–189. doi:

10.1016/j.foodpol.2013.09.003

Dissanayake, S. M., & Palihakkara, I. R. (2019). A review on possibilities of

intercropping with immature oil palm. International Journal For Research in

Applied Sciences and Biotechnology , 06 (06), 23–27. doi: 10.31033/ijrasb.6.6.5

Emrouznejad, A., & Thanassoulis, E. (2010). Measurement of productivity

index with dynamic dea. International Journal of Operational Research, 8 (2),

247. doi: 10.1504/IJOR.2010.033140

FAO. (2020). Soil biodiversity. Rome, Italy. Retrieved 09.08.2020, from http://

www.fao.org/soils-portal/soil-biodiversity/en/

Färe, R., Grosskopf, S., Norris, M., & Zhang, Z. (1994). Productivity growth,

technical progress and efficiency change in industrialized countries. The Ameri-

can Economic Review , 84 (1), 66–83. Retrieved from https://www.jstor.org/

stable/2117971

Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the

Royal Statistical Society, Series A (General), 120 (3), 253–290.

Feintrenie, L., Chong, W. K., & Levang, P. (2010). Why do farmers prefer oil

palm? lessons learnt from bungo district, indonesia. Small-scale Forestry , 9 (3),

379–396. doi: 10.1007/s11842-010-9122-2

Førsund, F. R., & Sarafoglou, N. (2002). For-

sund2002_on_the_origins_of_data_envelopment_analysis. Journal of

Productivity Analysis , 17 (1/2), 23–40. doi: 10.1023/A:1013519902012

Gollop, F., Swinand, & G. (2001). Total resource productivity: Accounting for

changing environmental quality. NBER studies in income and wealth, 63 , 587–

608. Retrieved 30.10.2019, from http://www.nber.org/chapters/c10135

61

http://www.fao.org/soils-portal/soil-biodiversity/en/
http://www.fao.org/soils-portal/soil-biodiversity/en/
https://www.jstor.org/stable/2117971
https://www.jstor.org/stable/2117971
http://www.nber.org/chapters/c10135


REFERENCES Dynamic Resource Productivity

Hayati, A., Wickneswari, R., Maizura, I., & Rajanaidu, N. (2004). Genetic

diversity of oil palm (elaeis guineensis jacq.) germplasm collections from africa:

implications for improvement and conservation of genetic resources. TAG. The-

oretical and applied genetics. Theoretische und angewandte Genetik , 108 (7),

1274–1284. doi: 10.1007/s00122-003-1545-0

Imai, N., Furukawa, T., Tsujino, R., Kitamura, S., & Yumoto, T. (2018). Factors

affecting forest area change in southeast asia during 1980-2010. PloS one, 13 (5),

e0197391. doi: 10.1371/journal.pone.0197391

Jelsma, I., Schoneveld, G. C., Zoomers, A., & van Westen, A. (2017). Un-

packing indonesia’s independent oil palm smallholders: An actor-disaggregated

approach to identifying environmental and social performance challenges. Land

Use Policy , 69 , 281–297. doi: 10.1016/j.landusepol.2017.08.012

Jost, L. (2006). Entropy and diversity. Opinion.

Ketterings, Q. M., Tri Wibowo, T., van Noordwijk, M., & Penot, E. (1999).

Farmers’ perspectives on slash-and-burn as a land clearing method for small-

scale rubber producers in sepunggur, jambi province, sumatra, indonesia. For-

est Ecology and Management , 120 (1-3), 157–169. doi: 10.1016/S0378-1127(98)

00532-5

Khatiwada, D., Palmén, C., & Silveira, S. (2018). Evaluating the palm oil

demand in indonesia: production trends, yields, and emerging issues. Biofuels ,

1–13. doi: 10.1080/17597269.2018.1461520

Kubitza, C., Krishna, V. V., Alamsyah, Z., & Qaim, M. (2018). The economics

behind an ecological crisis: Livelihood effects of oil palm expansion in sumatra,

indonesia. Human Ecology , 46 (1), 107–116. doi: 10.1007/s10745-017-9965-7

Mhanhmad, S., Leewanich, P., Punsuvon, V., Chanprame, S., & Srinives, P.

(2011). Seasonal effects on bunch components and fatty acid composition in

dura oil palm (elaeis guineensis). African Journal of Agricultural Research,

6 (7), 1835–1843.

62



REFERENCES Dynamic Resource Productivity

Morcillo, F., Cros, D., Billotte, N., Ngando-Ebongue, G.-F., Domonhédo, H.,

Pizot, M., . . . Arondel, V. (2013). Improving palm oil quality through identi-

fication and mapping of the lipase gene causing oil deterioration. Nature com-

munications , 4 , 2160. doi: 10.1038/ncomms3160

Nchanji, Y. K., Nkongho, R. N., Mala, W. A., & Levang, P. (2016). Efficacy

of oil palm intercropping by smallholders. case study in south-west cameroon.

Agroforestry Systems , 90 (3), 509–519. doi: 10.1007/s10457-015-9873-z

Noleppa, S. (2016). Wwf palm oil report germany: Searching for alternatives.

Berlin, Germany.

OECD, & FAO. (2019). Agricultural outlook 2019-2028. OECD Publishing. doi:

10.1787/agr-outl-data-en

OECD, & FAO. (2020). Agricultural outlook 2020-2029: 4. oilseeds and oilseed

products. OECD Publishing. doi: 10.1787/agr-outl-data-en

Oettli, P., Behera, S. K., & Yamagata, T. (2018). Climate based predictability

of oil palm tree yield in malaysia. Scientific reports , 8 (1), 2271. doi: 10.1038/

s41598-018-20298-0

Ong, H. C., Mahlia, T., Masjuki, H. H., & Norhasyima, R. S. (2011). Comparison

of palm oil, jatropha curcas and calophyllum inophyllum for biodiesel: A review.

Renewable and Sustainable Energy Reviews , 15 (8), 3501–3515. doi: 10.1016/

j.rser.2011.05.005

Poku, K. (n.d.). Small-scale palm oil processing in africa: Fao agricultural

services bulletin (148th ed.). Retrieved from http://www.fao.org/3/y4355e/

y4355e00.htm#Contents

Purnomo, H., Okarda, B., Dermawan, A., Ilham, Q. P., Pacheco, P., Nurfatri-

ani, F., & Suhendang, E. (2020). Reconciling oil palm economic development

and environmental conservation in indonesia: A value chain dynamic approach.

Forest Policy and Economics , 111 , 102089. doi: 10.1016/j.forpol.2020.102089

63

http://www.fao.org/3/y4355e/y4355e00.htm#Contents
http://www.fao.org/3/y4355e/y4355e00.htm#Contents


REFERENCES Dynamic Resource Productivity

Reijnders, L., & Huijbregts, M. (2008). Palm oil and the emission of carbon-

based greenhouse gases. Journal of Cleaner Production, 16 (4), 477–482. doi:

10.1016/j.jclepro.2006.07.054

Repková, I. (2013). Estimation of banking efficiency in the czech republic:

Dynamic data envelopment analysis. Danube, 4 (4). doi: 10.2478/danb-2013

-0014

RSPO. (2019). About: Vision & missions. Retrieved 09.12.2019, from https://

rspo.org/about

Ruysschaert, D., & Salles, D. (2014). Towards global voluntary standards: Ques-

tioning the effectiveness in attaining conservation goals. Ecological Economics ,

107 , 438–446. doi: 10.1016/j.ecolecon.2014.09.016

Santika, T., Wilson, K. A., Budiharta, S., Law, E. A., Poh, T. M., Ancrenaz, M.,

. . . Meijaard, E. (2019). Does oil palm agriculture help alleviate poverty? a mul-

tidimensional counterfactual assessment of oil palm development in indonesia.

World Development , 120 , 105–117. doi: 10.1016/j.worlddev.2019.04.012

Sayer, J., Ghazoul, J., Nelson, P., & Klintuni Boedhihartono, A. (2012). Oil

palm expansion transforms tropical landscapes and livelihoods. Global Food

Security , 1 (2), 114–119. doi: 10.1016/j.gfs.2012.10.003

Soliman, T., Lim, F. K. S., Lee, J. S. H., & Carrasco, L. R. (2016). Closing

oil palm yield gaps among indonesian smallholders through industry schemes,

pruning, weeding and improved seeds. Royal Society open science, 3 (8), 160292.

doi: 10.1098/rsos.160292

Solow, R. (1957). Technical change and the aggregate production function. The

Review of Economics and Statistics , 39 (3), 312–320. Retrieved from https://

www.jstor.org/stable/1926047

United Nations. (2020). Sustainable development goals: Goal 2: Zero hunger.

Retrieved 1.9.2020, from https://www.un.org/sustainabledevelopment/

hunger/

64

https://rspo.org/about
https://rspo.org/about
https://www.jstor.org/stable/1926047
https://www.jstor.org/stable/1926047
https://www.un.org/sustainabledevelopment/hunger/
https://www.un.org/sustainabledevelopment/hunger/


REFERENCES Dynamic Resource Productivity

Urbina, D. A., & Ruiz-Villaverde, A. (2019). A critical review of homo eco-

nomicus from five approaches. American Journal of Economics and Sociology ,

78 (1), 63–93. doi: 10.1111/ajes.12258

Villoria, N. B., Golub, A., Byerlee, D., & Stevenson, J. (2013). Will yield

improvements on the forest frontier reduce greenhouse gas emissions? a global

analysis of oil palm. American Journal of Agricultural Economics , 95 (5), 1301–

1308. doi: 10.1093/ajae/aat034

Webb, A., & Wadhwa, A. (2016). The impact of drought on households in four

provinces in eastern indonesia. Jakarta, Indonesia.

65



Eidesstattliche Versicherung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit selbstständig

und ohne die Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe.

Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten und nicht veröf-

fentlichten Schriften entnommen wurden, sind als solche kenntlich gemacht. Die

Arbeit ist in gleicher oder ähnlicher Form oder auszugsweise im Rahmen einer an-

deren Prüfung noch nicht vorgelegt worden. Ich versichere, dass die eingereichte

elektronische Fassung der eingereichten Druckfassung vollständig entspricht.

Die Strafbarkeit einer falschen eidesstattlichen Versicherung ist mir bekannt, na-

mentlich die Strafandrohung gemäß § 156 StGB bis zu drei Jahren Freiheitsstrafe

oder Geldstrafe bei vorsätzlicher Begehung der Tat bzw. gemäß § 161 Abs. 1

StGB bis zu einem Jahr Freiheitsstrafe oder Geldstrafe bei fahrlässiger Begehung.

Jakob Vincent Latzko, Matrikelnr.: 21344724

Göttingen, den 19.11.2020


	Introduction
	Literature review
	Oil palm tree
	Oil palm tree: Physiology
	Oil palm tree: Main uses

	Demand side
	Palm oil demand: future prospects
	Palm oil demand: influencing factors

	Supply side
	Palm oil supply: evolution of Indonesian palm oil production
	Palm oil supply: increasing production and farmers' income
	Palm oil supply: El Niño

	Palm oil and environment
	Palm oil and environment: Description of the problem
	Palm oil and environment: Certification
	Palm oil and environment: Yield improvements


	Theory
	The scope of efficiency
	Farrell efficiency
	Total Resource Productivity

	Data
	C01 sample
	C01 sample: Number of observations and survey method
	Descriptive statistics of input and output variables


	Methodology
	Benchmarking with Data Envelopment Analysis
	Assumptions
	Minimal extrapolation
	Obtaining efficiency scores by mathematical optimization
	Returns to scale

	Malmquist Productivity Index
	Measuring dynamic resource productivity
	Measuring dynamic resource productivity: Effective number of species
	Measuring dynamic resource productivity: Directional Distance Function


	Results
	Returns to scale test
	Malmquist Productivity Index, technical change and technical efficiency
	Dynamic resource productivity
	Dynamic resource productivity: Measurement of environmental performance
	Dynamic Resource Productivity: Combination, comparison and interpretation of MPI and DDF results

	Discussion
	General discussion
	Discussion: policy implications
	Discussion: limitations, scope of the contribution and outlook


	Conclusion
	Appendix
	References

